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Introduction

Malignant mesothelioma [reviewed in (1) and (2)] is a rapidly 
fatal tumour arising in mesothelium, which has mesodermal 
origins and covers many of the important internal organs 
like the lungs (pleural mesothelioma), peritoneal cavities 
(peritoneal mesothelioma), the sacs surrounding the heart 
(pericardial mesothelioma) and the testis (tunica vaginalis 
mesothelioma). Although mesothelioma is a rare cancer, 
its incidence is still rising. Since the seminal experiments 
of Wagner (3), exposure to asbestos has been clearly 
identified as a cause of mesothelioma. It is estimated that 
125 million people worldwide have a history of asbestos 
exposure. Although the use of asbestos has been banned in 
several countries, there are several developing nations that 
continue to use asbestos (1). In addition, asbestos has a very 

long latency period. The duration of time between exposure 
to asbestos and the incidence of disease is approximately  
40 years (4). This means that the incidence of mesothelioma 
will continue to rise in the years to come.

Frequently alterations in clinical samples [reviewed  
in (1) and (2)] include loss of function of tumor suppressors 
common to several cancers such as CDKN2A and CDKN2B, 
but also in alterations in the NF2/Hippo signaling pathway 
converging on the activation of oncogenic Yes-associated 
protein 1 (YAP1) transcription co-activator, and in BRCA-
associated protein 1 (BAP1). Less frequent alterations 
include mutations in TP53, in TERT promoter and in genes 
involved in RNA metabolism. Interestingly, recent studies 
reporting frequent somatic mutations in epigenetic and 
splicing regulators (5,6) suggest that these alterations may 
represent a novel hallmark of cancer (5,6). 
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Several of the alterations observed in mesothelioma, as 
we shall discuss in this review, are overall linked to RNA 
metabolism and may have an effect beyond tumor cells 
behavior because they interfere with microenvironment.

Interestingly, since 2012 we know that 75% of the 
human genome is transcribed into RNAs, while only 2% of 
these transcripts are translated into proteins (7). Therefore, 
98% of the transcripts are not translated into proteins, 
while the contrary is observed in bacteria. The discovery 
that a large part of what had been called “junk DNA,” 
is actively transcribed and carries out crucial functions 
inspired the concept of the “RNA networks” (8), where 
RNA are the most influencing molecules in cellular function 
in eukaryotes, contrary to the view of protein-centered 
networks, which was assumed according to the knowledge 
acquired in prokaryotes.

It is very likely that a vast majority of non-coding 
transcripts adopts complex 3D structure(s) to achieve their 
biological functions. These “structured” RNAs act using 
very diverse mechanisms including RNA-RNA, RNA-
ligand, RNA-protein, RNA-DNA, and RNA-substrate 
interactions (9). Structured RNAs are critical components 
of key molecular machines in the cell, such as the 
spliceosome, ribosome, and telomerase, and RNA structures 
play important roles in the control not only of mRNA but 
also noncoding RNA functions (10).

RNA structures have different organization levels: the 
first one consists of the nucleotide sequence folding on itself 
via Watson–Crick base-pairing to form secondary structure 
elements (e.g., hairpins) and unpaired regions. In vitro  
studies have demonstrated that it can be modified by the 
amount of magnesium chloride (11). RNA structures are 
highly dynamic and modulated by binding to partners, 
which adds another degree of complexity to these structures.

A recent genome-wide RNA–RNA crosslinking study (12) 
using PARIS (psoralen analysis of RNA interactions and 
structures) identified a large number and diversity of RNA 
duplexes. 25% of the aligned double-strand helix-forming 
sequences were found to be conserved between mammals, 
birds and reptiles, suggesting a biological function. Indeed, 
the evolutionary conservation of RNA secondary structure 
across several species is a strong indicator of function (13).

A large amount of structured duplex RNA present and 
conserved in non-coding RNA (ncRNA) is an additional 
argument for sections that will be discussed below on duplex 
RNA being part of the pattern recognized by the innate 
immune system. Across many common human cancers, a 
large proportion of tumors unexpectedly express high levels 

of interferon (IFN)-stimulated genes (ISGs, e.g., IFT1-3,  
IFITM1, DDX58, IFIH1) that are typically associated 
with anti-viral signaling (14). However, given that cancer-
associated anti-viral signaling is occurring in a sterile 
microenvironment, this raises questions on the nature of the 
endogenous RNA that activates the signaling and the extent 
to which it influences the multitude of effects that stromal 
cells exert on cancer progression and therapy response.

In this review, we shall focus on ncRNA and immune 
signaling pathways in mesothelioma. 

We present the following article in accordance with the 
Narrative Review Reporting Checklist (available at http://
dx.doi.org/10.21037/pcm-21-4).

 

Endogenous ncRNAs activating and regulating 
innate immunity in mesothelioma

Endogenous ncRNA can activate the innate immunity after 
being recognized by RNA sensors (15). RNA sensors are 
classified into two families based on their structural motifs, 
leucine-rich repeat (LRR) and DExD/Hbox helicase. 
Nucleic acid-sensing in cancer is associated with cytosolic 
DExD/Hbox helicases (RIG-I-like receptors: RLR) or 
endosomal leucine-rich receptors (Toll-like receptors: TLR) 
sensors. 

Cytosolic sensors and endogenous ncRNA ligands and 
regulators

In the cytosol, there are two nucleic acids sensing systems: 
the cGAS–STING pathway for the recognition of DNA (16), 
and the RLRs for the recognition of RNA species (17).

In this review dedicated to ncRNA we focus on RLRs. 
The latter include retinoic acid-inducible gene I (RIG-I, 
encoded by DDX58 gene), melanoma differentiation-
associated protein 5 (MDA5, encoded by IFIH1 gene) and 
laboratory of genetics and physiology 2 (LGP2, encoded by 
DHX58 gene). RIG-1 and MDA5, but not LGP2, possess 
a caspase activation recruitment domain (CARD) necessary 
for downstream signaling. Oligomerization of RIG-I and 
MDA5 drive their association with their common adapter 
mitochondrial antiviral signaling protein (MAVS) (Figure 1). 

Activation of MAVS results in stimulation of the kinases 
TANK-binding kinase 1 (TBK1) and IκB kinase ε, which 
phosphorylate MAVS, then transcription factors interferon 
regulatory factor 3 and 7 (IRF3 and 7, respectively), 
and NF-κB. In the context of mesothelioma it is worth 
noting that YAP activity results in inhibition of TBK1  
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activation (18). This may represent a negative feed-back 
loop because dsRNA-signaling can activate YAP activity 
through the activation of IRF3 (19). Importantly IRF3 
has been shown to act as YAP agonist and IRF3 depletion 
results in the suppression of YAP-driven growth (19), at 
least in gastric cancer. These data are consistent with our 
observation that dsRNA signaling is activated (20) during 
mesothelioma development in asbestos-exposed mice where 
we had previously described YAP activation (21). Altogether, 
this suggests that IRF3 could be a new therapeutic target 

against YAP-driven mesothelioma. As we mentioned above, 
YAP activation is controlled by the NF2/Hippo pathway but 
recent work has also conferred this property to BAP1 (22),  
at least in pancreatic cancer. Therefore, control of 
YAP signaling has an influence not only on tumor cell 
proliferation but also shuts-down a signaling affecting 
immune signaling. Indeed, phosphorylation of IRF3 leads 
to conformational changes and rearrangement of IRF3 
monomers to dimers. Dimeric IRF3 then translocates to the 
nucleus to bind to IRF binding elements for the induction 
of interferon-stimulated genes (ISG), such as IFNB1, ISG15 
(Figure 1) (23). As mentioned above, among the most 
frequent genomic alterations in pleural mesothelioma are 
the homozygous deletions (HD) of the CDKN2A tumor 
suppressor gene. CDKN2A HD are accompanied in 30% of 
the cases by the HD of all genes encoding type I interferons 
(IFN I) which lie nearby in the chromosome 9 (24),  
indicating an additional interference with interferon 
signaling. 

LGP2 is unable to interact with MAVS (25) and has 
been found to have opposite effects on RIG-I and MDA5. 
Indeed, LGP2 downregulates RIG-I’s signaling activity, 
while it upregulates MDA5 signaling (26). 

Although knowledge about these sensors had been 
acquired because they are essential in response to viruses, 
which form dsRNA during their replication, they can be 
stimulated by endogenously formed dsRNA, in the absence 
of mechanisms allowing the distinction between self and 
non-self nucleic acids. Indeed, RLRs utilize multiple criteria 
to ensure selective recognition of non-self RNA and robust 
discrimination against cellular RNA. For both RIG-I and 
MDA5, duplex RNA structure is necessary but not sufficient 
for the sensing of foreign RNA. 

Endogenous RIG-1 ligands 

For the activation of RIG-I, a 5' triphosphate group (5'ppp), 
which is present in all nascent transcripts and unprocessed 
viral RNAs, is additionally required (27-29). Polymerase III 
transcription is the main source of endogenous 5’ppp RNA 
in the absence of viral infection (30). Polymerase III activity 
is augmented by MYC (31) and by nearby RNA polymerase 
II occupancy (32).

Most cytosolic mRNAs do not have a 5’ triphosphate group 
because they contain both a 7-methyl guanosine cap (cap 0) and 
2'-O methylation (cap 1). Cap 0 protects the molecule from 5' 
to 3' exonuclease cleavage and is essential for the regulation of 
gene expression, including splicing, nuclear export of mRNA, 
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Figure 1 Interference of YAP with dsRNA-dependent IFN-
inducing pathways downstream cytosolic sensors. dsRNA binds the 
helicases domain of MDA5 or RIG-1, driving their oligomerization 
through CARD, activating MAVS. Activation of MAVS results 
in stimulation of the TBK1 and IKK ε, which phosphorylate 
MAVS, then IRF-3, IRF-7 and NF-κB. YAP, inhibits TBK1. 
Phosphorylation of IRF3 leads to conformational changes and 
rearrangement of IRF3 monomers to dimers. Dimeric IRF3 
then translocates to the nucleus to bind to IRF binding elements 
for the induction interferon-stimulated genes (ISG). YAP, Yes-
associated protein 1; CTD, carboxy-terminal domain; ds, double-
stranded; MDA5, melanoma differentiation-associated protein 5; 
RIG-1, retinoic acid-inducible gene I; CARD, caspase activation 
recruitment domain; MAVS, mitochondrial antiviral signaling 
protein; TBK1, TANK-binding kinase 1; IKK ε, IκB kinase-ε; IRF, 
interferon regulatory factor.
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and translation initiation (33,34). Cap 1, is dependent on the 
activity of a cap1 methyltransferase 1 (CMtr1), encoded by a 
gene induced by type 1 IFN. 2'-O methylation is required to 
avoid stimulation of RIG-1. Downregulation of CMtr1 results 
in RIG1-dependent increased type 1 IFN activation (35).  
Additionally, a dsRNA length of >19 bp and blunt end is 
sufficient to activate RIG-1 (27). 

Circular RNAs (circRNA) are recently described 
sequences of RNA formed by back-splicing especially in 
the presence of Alu repeats and complementary sequences 
around exons (36,37). Almost 300 circRNAs have been 
reported to be upregulated when mesothelioma were 
compared to normal mesothelial cells (38). CircRNA 
can stimulate RIG-I and host circRNAs normally evade 
recognition by RIG-I through N6-methyladenosine 
modification, which is recognized as endogenous RNA via 
N6-methyladenosine readers of YT521-B homology (YTH) 
family (39) (Figure 2A). Recent studies have demonstrated 
that inhibition of N6-methyladenosine readers increases 
the activity of immune checkpoint inhibitors (40). This 

is important since YTHDF1 is significantly enriched 
in sarcomatoid tumors while WTHDF2 is enriched in 
epithelioid tumors (41). 

RNA processing defect leads to the accumulation 
of potentially immunogenic aberrant RNA transcripts. 
Cytoplasmic mRNA turnover is initiated by poly(A) tail 
removal and proceeds via two mechanisms, including 3'-5'  
exoribonucleolysis by the so called RNA exosome (42).  
Cytoplasmic RNA exosome activity requires the Ski 
complex, comprising the scaffold Ski3 (TTC37), two 
copies of Ski8 (WDR61), and the helicase Ski2 (SKIV2L). 
Recently, in our own experimental model of mesothelioma 
development (21) in mice exposed to asbestos, we observed 
a significant (P=7.21E-07, FDR =2.18E-06) 1.4-fold 
increase Skiv2l in mesothelioma tumors when compared to 
inflamed tissue, indicating an increase in RNA processing 
activity. Interestingly, SKIV2L expression is significantly 
higher in epithelioid compared to tissues with a sarcomatoid 
molecular profile (41). Serine/threonine-protein kinase/
endoribonuclease inositol-requiring enzyme 1 α (IRE1α) 

Figure 2 RNA able to form dsRNA. (A) circRNAs are overexpressed in mesothelioma. They are formed by back splicing and are normally 
recognized as self through N6-methyladenosine which is recognized by YTH-domain containing RNA binding proteins. In the absence 
of N6-methyladenosine they activate RIG-I. (B) Alu repetitive sequences makeup 11% of the human genome and upon expression can be 
found in two-strand directions + and –, which allows them to bind the complementary sequence and form dsRNA structures. (C) Repetitive 
elements include ERV which may be expressed upon promoter demethylation and form dsRNA. ERV, endogenous retroviruses; ds, double-
stranded.
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(encoded by ERN1) is activated during the unfolded 
protein response (UPR), responsible for the cleavage of 
the precursor of XBP1 mRNA allowing the generation 
of the functional XBP1 necessary for the transcription of 
UPR genes. Interestingly, a basal UPR signaling has been 
observed in mesothelioma cells grown in 2D conditions 
and a low UPR signaling has been associated with 
chemotherapy resistance (43). IRE1α also generates RIG-I 
ligands that are normally degraded by the SKIV2L RNA 
exosome, thereby increasing the basal signaling activity of 
RIG-I in SKIV2L deficient cells (44). In the mesothelioma 
development model mentioned above (21) we observed 
a significant (P=0.00004514, FDR =0.0001064) 2-fold 
increase of Ern1 in mesothelioma tumors when compared 
to inflamed tissue, and, like for SKIV2L, ERN1 expression 
is significantly higher in epithelioid compared to tissues 
with a sarcomatoid molecular profile (41). Altogether, 
these observations indicate that additional ways are 
activated, at least in epithelial mesothelioma, to shut down 
interferon signaling. 

Finally, depletion of the human silencing hub (HUSH) 
complex, which includes MPHOSPH8/MPP8, periphilin 
(PPHLN1) results in activation of long-interspersed nuclear 
elements (LINEs) repetitive elements and activation of 
both, RIG-I and MDA-5 (45).

MDA-5 endogenous ncRNA ligands 

MDA5 does not need 5'ppp. Instead, MDA5 has more-
stringent criteria for dsRNA length (>0.5–1 kb) and 
dsRNA complementarity of the two strands in the selective 
recognition of foreign dsRNA and discrimination against 
shorter and imperfect cellular dsRNAs. dsRNA may be 
present in transcripts containing repetitive elements (46) 
(Figure 2B). Alu are part of repetitive elements found in the 
human genome. There are four main types of repetitive 
elements: LINEs, short-interspersed nuclear elements 
(SINEs), Retrovirus-like elements such as endogenous 
retroviruses (ERV) and DNA transposon fossils (47). 
Altogether they cover two-third of the human genome (48).  
Taken together with the information that 75% of the 
genome is transcribed, a large part of the transcriptome 
corresponds to repetitive elements. Alu elements are the 
most important subgroup of the SINEs. They makeup 
11% of the human genome and can be found in two-
strand directions + and –, which allows them to bind the 
complementary sequence and form dsRNA structures 
(Figure 2B). Endogenous dsRNA formed by inverted Alu 

repeats, in the absence of viral infection constitute about 
67% of dsRNA bound to MDA5 with a gain of function 
mutation G495R (49,50). Eighty-four percent of these Alus 
are in the 3’untranscribed region (UTR). MDA5 G495R is 
representative of mutations in MDA5 leading to aberrant 
activation of its signaling activity, resulting in a spectrum of 
immune disorders, such as systemic lupus erythematosus, 
or Aicardi-Goutières syndrome (51). In vitro, these MDA5 
variants display more efficient filament formation on dsRNA 
and high basal signaling activities in the absence of viral 
infection due to misrecognition of cellular RNAs, resulting 
in self-triggered signaling (49). Adenosine-to-inosine 
modification by the adenosine deaminase acting on dsRNA 
(ADAR) has been found to block the recognition of dsRNA 
by MDA5. A defect in ADAR1 results in aberrant activation 
of MDA5 by cellular dsRNAs formed by Alu retroelements 
(49,52-54). We recently observed in an experimental animal 
model of asbestos-induced mesothelioma development (21), 
that asbestos increased the levels of RNA mutations and the 
most abundant changes were A to G mutations resulting 
from ADAR activity (55).

Aberrant activation of MDA5 is also observed due to 
increased synthesis of ERV (Figure 2C) upon suppression of 
DNA methyltransferases (56,57). Interestingly, YAP induces 
Dnmt3l (58) which although being inactive, stimulates 
the activity of the others DNMT and is important for the 
maintenance of embryonic stem cells. Recently, in our own 
model of mesothelioma development (21) we observed a 
significant (P=0.0008227, FDR=0.001586) 6.5-fold increase 
of Dnmt3l expression in mesothelioma tumors, consistent 
with activation of YAP signaling, when compared to 
inflamed tissue. In the same experimental model Dnmt1 and 
Dnmt3b are also significantly upregulated, consistent with 
the observation of methylation of some tumor suppressor 
genes at early stages during mesothelioma development 
as documented by increased levels of DNA methylation 
at ink4a locus after mice exposure to asbestos (59). On the 
other hand, Dnmt3a is significantly downregulated in both, 
mice (21) and rats (60), exposed to asbestos. Since Dnmt3a 
is the enzyme responsible for retroviral silencing in somatic 
cells (61), this may mean that retroviral elements may not 
be efficiently silenced. 

Increased synthesis of ERV is also observed upon 
suppression of the histone methyltransferase SETDB1 (62)  
and this may occur in the subset of mesothelioma patients 
with mutated SETDB1 (41,63-65). Increased ERV 
expression is also observed by deficiency of the histone 
demethylase KDM1A/LSD1 activity (66).
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The immunostimulatory effect observed by hypomethylating 
agents such as decitabine and azacytidine is currently exploited 
in combination immunotherapy treatment in different 
cancers (67) but not yet in mesothelioma although therapeutic 
approaches exploiting type-I IFN pathway signaling have 
already been implemented in the clinic (68) or proposed on the 
basis of preclinical studies (69,70). 

Of particular interest in the field of cancer is that 
increased expression of ERV is also observed with CDK4/6 
inhibitors (71). Activation of interferon signaling is observed 
upon inhibition of CDK4/6 in mesothelioma cells (72).  
This is important since CDK4/6 inhibitor abemaciclib 
is currently tested in p16INK4A negative MPM patients 
[NCT03654833 (MiST) (73).

Endosomal sensors of dsRNA 

Endosomal sensing of nucleic acids is based on TLRs (74). 

TLR3 is a sensor for double-stranded [ds] RNA) (75), while 
TLR7 (76) and TLR8 are sensors for (single-stranded 
[ss] RNA) (77) (Figure 3). Recently, in our own model of 
mesothelioma development, we observed a significant 
increase of Tlr3, Tlr7 and Tlr8 upon asbestos exposure (21).

Ligand-binding mediates TLR dimerization, leading 
to the assembly of signaling complexes activating kinases 
that drive transcription and glycolysis (78). TLR7/8 induce 
the assembly of myddosome, upon ssRNA detection. 
Myddosome assembly occurs around the cytosolic tail 
of dimerized TLRs present at the plasma membrane 
or endosomes. The E3 ubiquitin ligase TNF receptor-
associated factor 6 (TRAF6) is present in the myddosome. 
TRAF6 functions are to stimulate myddosome-associated 
TBK1 to drive metabolic changes in the cell and to 
stimulate IKK- and MAPK-dependent transcription factors. 
TLR3 induces the assembly of triffosome that are so called 
because they contain TIR domain-containing adaptor 

Figure 3 Metabolism and necroptosis regulation downstream endosomal RNA sensors and possible interference of YAP. TLR7/8 induce 
the assembly of myddosome, upon ssRNA detection. Myddosome assembly occurs around the cytosolic tail of dimerized TLRs present 
at the plasma membrane or endosomes. The E3 ubiquitin-ligase TRAF6 is present in the myddosome. TRAF6 functions are to stimulate 
myddosome-associated TBK1 to drive metabolic changes in the cell and to stimulate IKK- and MAPK-dependent transcription factors. 
TLR3 induces the assembly of triffosome. TIR domain-containing adaptor inducing IFN-β (TRIF) promotes TBK1-dependent gene 
expression and receptor-interacting serine/threonine-protein kinase 3 (RIPK3)-dependent-necroptosis. YAP inhibits TBK1. YAP, Yes-
associated protein 1; TRAF6, TNF receptor-associated factor 6; TBK1, TANK-binding kinase 1; TLR, Toll-like receptor.
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inducing IFN-β (TRIF). TRIF promotes TBK1-dependent 
gene expression and receptor-interacting serine/threonine-
protein kinase 3-dependent necroptosis. Nucleic acids 
have to be processed to nucleic acids and free nucleosides 
in endosomes to be able to activate downstream signaling. 
TLR7 dimerization is most efficient in the presence of 
ssRNA and free guanosine molecules (79,80). Similarly, 
TLR8 dimers form most efficiently in the presence of 
ssRNA and free uridines (77). The process by which dual 
ligands are produced to maximally dimerize TLRs may 
occur only in endosomes through the actions of acid-
dependent nucleases present in these organelles. Cells lacking 
the lysosomal RNase T2 are defective for TLR8 signaling (77).  
Additionally, at least in the case of TLR3, the affinity of 
the sensor for nucleic acids is strongest at acidic pH (81). 
Single molecules of dsRNA bind TLR3 dimers (82). TLR3 
minimally responds to approximately 40 bp dsRNA by a 
reporter assay (83,84). Experimental evidence suggests 
activation of type 1 IFN via TLR3 by antracycline 
treatment (85), although the species activating the signaling 
is unknown. It has been reported that addition of dsRNA 
binding domain agonist poly (I-C) synthetic ligand induces 
cell death in some TLR3-positive mesothelioma cells and 
the effects are increased by cisplatin pre-treatment in p53 
wild-type cells (69). This is consistent with the knowledge 
about TLR3 induction by p53 (86) .

Perspective and open questions 

Knowledge recently acquired and discussed in this review 
highlights the role of endogenous ncRNA as ligands in 
innate immunity in mesothelioma. Mesothelioma is the 
sixth of 31 cancer types with most prevalent 38- ISGs 
signature (87) and, in a large fraction of ISGs high tumors, 
no immune cells, possibly contributing to the phenotype, 
have been detected, indicating spontaneous IFN production 
by cancer cells per se. This is consistent with recent studies 
showing that mesothelioma cells maintain the activation 
of the type-I IFN signaling pathway (20,88). Oncoprint 
analysis (www.cBioportal.org) of mesothelioma TCGA 
data (Figure 4) of the different components of the ncRNA 
regulatory networks involved in innate immunity described 

in this review shows that patients with an activated type 1 
interferon signaling (increased expression of ISG) have a 
tendency to better overall survival. Alterations in ncRNA 
regulatory networks are frequently observed and there is a 
statistically significant co-occurrence between alterations of 
several components of ncRNA regulatory networks (Table 1).

The more detailed mechanisms behind the crosstalk 
between cancer therapy and stimulation of innate 
immune system by endogenous ncRNA characterized 
so far are related to irradiation or inhibition of DNA 
methyltransferase, which are already explored in clinical 
trials. Few clinical trials have or are exploring synthetic 
RNA as direct stimulators (89,90). For example, pre-clinical 
studies have shown that modified poly-IC, a synthetic 
mimic of dsRNA, increases tumor infiltration by T cells (91)  
by stimulating MDA5-mediated production of IFN β in 
vascular endothelial cells, suggesting that this stimulation 
may improve T-cell based cancer immunotherapy.

Besides being used for therapeutic intervention, the 
expression of endogenous ncRNA could be used as in 
mesothelioma as biomarkers e.g., to stratify patients 
responding to immunotherapy as it has been shown for 
ERV in clear cell kidney cancer (92).

On the other side cancer cells impairment of type 1 IFN 
signaling makes them sensitive to oncolytic therapy (93), 
indicating ways to select the patients.

While several experimental mechanistic data and 
clinical evidence (94) have highlighted the contribution of 
endogenous ncRNA for cancer patients to obtain clinical 
benefits from immunogenic cell death-inducing therapies, 
several questions still subsist. This includes the extent 
of the variation of endogenous ncRNA ligands between 
individuals. Advances in sequencing techniques and global 
determination of RNA structures in living cells, such as the 
PARIS technique mentioned in the introduction, will allow 
the analysis of the functions of RNA structures, therefore 
laying a foundation for understanding RNA regulatory 
networks and immune signaling pathways in mesothelioma. 
However,  as  previously mentioned ncRNA could 
already be explored as potential markers for therapeutic 
intervention such as ERV for the stratification of patients 
for immunotherapy.
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Figure 4 Non-coding RNA regulatory networks and type 1 interferon immune signaling pathways in mesothelioma. “Oncoprint” analysis 
performed January 26, 2021 using cBioportal (www.cBioportal.org). For m-RNA differential expression we used a z score of 1.2, where the 
z-score is the standard deviation of static levels of transcript expression in a given case compared to the mean transcript expression in diploid 
tumors.
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Table 1 Statistically significant co-occurrence alterations in non-coding RNA and innate immune system regulatory networks in mesothelioma 
(www.cBioportal.org)

A B Neither A Not B B Not A Both Log2 Odds Ratio p-Value q-Value Tendency

CDKN2A CDKN2B 35 1 9 37 >3 <0.001 <0.001 Co-occurrence

IFIT1 IFIT3 71 1 0 10 >3 <0.001 <0.001 Co-occurrence

DDX58 IFIT1 70 1 2 9 >3 <0.001 <0.001 Co-occurrence

DDX58 IFIT3 70 2 2 8 >3 <0.001 <0.001 Co-occurrence

IFIT2 IFIT3 70 2 2 8 >3 <0.001 <0.001 Co-occurrence

IFIT1 IFIT2 69 3 2 8 >3 <0.001 <0.001 Co-occurrence

IFIH1 IFIT3 67 5 3 7 >3 <0.001 0.002 Co-occurrence

IFIH1 IFIT1 66 5 4 7 >3 <0.001 0.005 Co-occurrence

DDX58 IFIT2 68 4 4 6 >3 <0.001 0.008 Co-occurrence

CDKN2A IFNA1 39 19 5 19 2.963 <0.001 0.009 Co-occurrence

IFIH1 TLR3 69 7 1 5 >3 <0.001 0.009 Co-occurrence

CDKN2B IFNA1 33 25 3 21 >3 <0.001 0.009 Co-occurrence

IFIT3 IFITM1 70 5 2 5 >3 <0.001 0.009 Co-occurrence

DDX58 CMTR1 67 4 5 6 >3 <0.001 0.011 Co-occurrence

IFIT1 IFITM1 69 6 2 5 >3 <0.001 0.015 Co-occurrence

TLR3 ADAR 58 0 18 6 >3 <0.001 0.016 Co-occurrence

IFIH1 DDX58 66 6 4 6 >3 <0.001 0.016 Co-occurrence

IFIH1 IFIT2 66 6 4 6 >3 <0.001 0.016 Co-occurrence

IFIT1 CMTR1 66 5 5 6 >3 <0.001 0.017 Co-occurrence

CDKN2A MPHOSPH8 34 15 10 23 2.382 <0.001 0.017 Co-occurrence

IFIH1 IFITM1 68 7 2 5 >3 <0.001 0.017 Co-occurrence

NF2 IFNAR1 32 25 4 21 2.748 <0.001 0.019 Co-occurrence

DNMT3A TET1 74 5 0 3 >3 <0.001 0.019 Co-occurrence

CDKN2B IFIT1 26 45 10 1 <-3 <0.001 0.026 Mutual exclusivity

TP53 DNMT3B 50 21 2 9 >3 0.001 0.040 Co-occurrence

DDX58 TLR3 70 6 2 4 >3 0.002 0.040 Co-occurrence

TLR3 IFIT2 70 2 6 4 >3 0.002 0.040 Co-occurrence

TLR3 IFIT3 70 2 6 4 >3 0.002 0.040 Co-occurrence

CDKN2B DDX58 27 45 9 1 <-3 0.002 0.049 Mutual exclusivity

CDKN2B IFIT3 27 45 9 1 <-3 0.002 0.049 Mutual exclusivity

CDKN2B IFITM1 29 46 7 0 <-3 0.002 0.049 Mutual exclusivity

TTC37 TET3 51 16 5 10 2.672 0.002 0.049 Co-occurrence

TLR3 IFIT1 69 2 7 4 >3 0.002 0.049 Co-occurrence

TLR3 CMTR1 69 2 7 4 >3 0.002 0.049 Co-occurrence

DHX58 IFIT1 63 8 5 6 >3 0.002 0.049 Co-occurrence

CDKN2A CDKN2B 35 1 9 37 >3 <0.001 <0.001 Co-occurrence

IFIT1 IFIT3 71 1 0 10 >3 <0.001 <0.001 Co-occurrence

DDX58 IFIT1 70 1 2 9 >3 <0.001 <0.001 Co-occurrence

DDX58 IFIT3 70 2 2 8 >3 <0.001 <0.001 Co-occurrence
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